Ejercicios y Problemas de Estequiometría 4º ESO

La estequiometría es una herramienta fundamental en la química que nos permite entender las relaciones cuantitativas entre los reactivos y productos en las reacciones químicas. A través de su estudio, los estudiantes de 4º ESO pueden aprender a realizar cálculos precisos sobre la cantidad de sustancias involucradas en diferentes procesos químicos. En esta sección de Cepa Ingenio, ofrecemos una variedad de recursos y ejercicios prácticos que facilitarán el aprendizaje y la comprensión de este importante tema, ayudando a los alumnos a dominar los conceptos de forma efectiva.

Ejercicios y Problemas Resueltos

Aquí encontrarás una colección de ejercicios y problemas resueltos que te permitirán practicar y afianzar tus conocimientos en estequiometría. Cada ejercicio está acompañado de su respectiva solución, lo que te ayudará a evaluar tu comprensión y mejorar tus habilidades de resolución de problemas.

Ejercicio 1:
Un sistema de reacción química se establece entre el hidrógeno (H₂) y el oxígeno (O₂) para formar agua (H₂O) según la siguiente ecuación balanceada: \[ 2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \] Si se disponen de 4 moles de H₂ y 2 moles de O₂, determina: 1. ¿Cuántos moles de agua se pueden producir en total? 2. ¿Cuál es el reactivo limitante en esta reacción? 3. Si se producen 3 moles de agua, ¿cuántos moles de cada reactivo quedan sin reaccionar? Justifica tus respuestas con los cálculos correspondientes.
Ejercicio 2:
Un recipiente de 5 litros contiene una mezcla de gases formada por 2 moles de oxígeno (\(O_2\)) y 3 moles de dióxido de carbono (\(CO_2\)) a una temperatura de 300 K. Calcula la presión total de la mezcla de gases utilizando la ley de los gases ideales. Además, determina la fracción molar de cada gas en la mezcla y explica cómo afecta la fracción molar a la presión parcial de cada uno de los gases. Utiliza la ecuación de estado de los gases ideales \(PV=nRT\) y recuerda que \(R = 0.0821 \, \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})\).
Ejercicio 3:
Un recipiente de 5 litros contiene una disolución de ácido clorhídrico (HCl) al 20% en masa. Si la densidad de la disolución es de 1,1 g/mL, calcula: 1. La cantidad de HCl en moles que hay en el recipiente. 2. El volumen de gas hidrógeno (H₂) que se generaría al reaccionar esta cantidad de HCl con una cantidad suficiente de zinc (Zn) según la reacción: \[ \text{Zn} + 2\text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2 \] Considera que las condiciones de temperatura y presión son normales (0 °C y 1 atm).
Ejercicio 4:
Un recipiente de 10 litros contiene gas oxígeno (O₂) a una presión de 2 atm y una temperatura de 27 ºC. Utilizando la ecuación de estado de los gases ideales, calcula la cantidad de moles de oxígeno que hay en el recipiente. Además, si se desea obtener gas hidrógeno (H₂) a partir de la reacción de electrólisis del agua, ¿cuántos litros de hidrógeno se obtendrán a 1 atm y 27 ºC, considerando que la relación estequiométrica de la reacción es 2 H₂O → 2 H₂ + O₂? (Recuerda que 1 mol de gas ocupa 22.4 L a condiciones normales de temperatura y presión).
Ejercicio 5:
Un recipiente de 10 L contiene 0.5 mol de un gas ideal a una temperatura de 300 K. Utilizando la ecuación de estado de los gases ideales \( PV = nRT \), calcula la presión del gas en el recipiente. Posteriormente, si se añaden 0.5 mol más de gas al mismo recipiente y la temperatura se eleva a 600 K, ¿cuál será la nueva presión del gas? Expresa tus respuestas en atmósferas (atm).
Ejercicio 6:
Un recipiente contiene 5 moles de oxígeno (O₂) y 8 moles de hidrógeno (H₂). Se lleva a cabo la reacción de combustión, que se describe mediante la ecuación química balanceada: \[ 2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \] 1. ¿Cuántos moles de agua (H₂O) se forman tras la reacción completa? 2. ¿Cuál es el reactivo limitante en esta reacción? 3. Si la reacción se lleva a cabo en condiciones ideales y se producen 36 gramos de agua, ¿cuántos moles de oxígeno y de hidrógeno quedan sin reaccionar? Recuerda que la masa molar del agua es aproximadamente 18 g/mol.
Ejercicio 7:
Un recipiente contiene 5 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se permite que estos gases reaccionen para formar agua (H₂O) de acuerdo con la reacción: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \] 1. Determina el reactivo limitante en esta reacción. 2. Calcula la cantidad de producto (en moles) que se formará. 3. Si se obtienen 36 gramos de agua, verifica si la cantidad de reactivos iniciales es suficiente para producir esa masa de agua. Recuerda que la masa molar del agua es aproximadamente 18 g/mol.
Ejercicio 8:
Un recipiente contiene 5 moles de oxígeno (\(O_2\)) y 3 moles de hidrógeno (\(H_2\)). Si se realiza la reacción de formación de agua (\(H_2O\)) según la ecuación balanceada: \[ 2H_2 + O_2 \rightarrow 2H_2O \] a) ¿Cuántos moles de agua se pueden formar? b) ¿Qué reactivo es el limitante? c) ¿Cuántos moles de reactivo sobrante hay después de la reacción?
Ejercicio 9:
Un recipiente contiene 5 moles de oxígeno (\(O_2\)) y 3 moles de hidrógeno (\(H_2\)). Si se lleva a cabo la siguiente reacción de combustión: \[ 2H_2 + O_2 \rightarrow 2H_2O \] a) ¿Cuántos moles de agua (\(H_2O\)) se producirán si se consumen todos los reactivos? b) ¿Qué reactivo es el limitante y cuántos moles sobrantes de cada reactivo quedarán después de la reacción? c) Si se forman 36 g de agua, ¿cuántos moles de \(O_2\) se han consumido en la reacción?
Ejercicio 10:
Un recipiente contiene 5 moles de oxígeno (\(O_2\)) y 3 moles de hidrógeno (\(H_2\)). Si se lleva a cabo la reacción de formación de agua (\(H_2O\)) según la siguiente ecuación química: \[ 2H_2 + O_2 \rightarrow 2H_2O \] a) ¿Cuántos moles de agua se formarán? b) ¿Cuántos moles de reactivos quedan sin reaccionar después de la reacción? c) Si la reacción se lleva a cabo a 25°C y la presión total del sistema es de 2 atm, ¿cuál es el volumen total de los gases en condiciones ideales? (Utiliza la ecuación de estado de los gases ideales \(PV = nRT\), donde \(R = 0.0821 \, \text{L·atm/(K·mol)}\)).
Ejercicio 11:
Un recipiente contiene 5 moles de oxígeno (\(O_2\)) y 3 moles de hidrógeno (\(H_2\)). Se lleva a cabo la reacción de formación de agua (\(H_2O\)) según la siguiente ecuación balanceada: \[ 2H_2 + O_2 \rightarrow 2H_2O \] a) ¿Cuántos moles de agua se pueden formar a partir de los reactivos disponibles? b) ¿Qué reactivo es el limitante en esta reacción? c) Si se forman 4 moles de agua, ¿cuántos moles de cada reactivo quedan sin reaccionar?
Ejercicio 12:
Un recipiente contiene 4 moles de oxígeno (O₂) y 2 moles de hidrógeno (H₂). Si se produce la reacción de formación de agua (H₂O) según la ecuación: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \] ¿Cuántos moles de agua se pueden formar y cuántos moles de cada reactivo sobran después de la reacción?
Ejercicio 13:
Un recipiente contiene 4 moles de oxígeno (O₂) y 2 moles de hidrógeno (H₂). Si se hace reaccionar todo el hidrógeno con el oxígeno, se formarán moléculas de agua (H₂O) según la siguiente reacción química: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \] 1. ¿Cuántos moles de agua se producirán al completar la reacción? 2. ¿Cuántos moles de oxígeno quedarán en el recipiente después de la reacción? 3. Si el volumen del recipiente es de 22.4 L y se encuentra a condiciones estándar (0 °C y 1 atm), ¿cuál será la presión parcial del oxígeno que queda en el recipiente? (Considera que el gas se comporta de manera ideal).
Ejercicio 14:
Un recipiente contiene 2 moles de oxígeno gas (\(O_2\)) y 3 moles de hidrógeno gas (\(H_2\)). Si se lleva a cabo la reacción de combustión del hidrógeno según la siguiente ecuación química: \[ 2H_2 + O_2 \rightarrow 2H_2O \] 1. ¿Cuántos moles de agua (\(H_2O\)) se producirán si la reacción se lleva a cabo completamente? 2. ¿Cuál es el reactante limitante en esta reacción? 3. Si la reacción se desarrolla a una temperatura de 25 °C y a una presión de 1 atm, ¿cuál será el volumen total de vapor de agua producido en litros, considerando que la reacción se lleva a cabo bajo las condiciones del gas ideal? (Usa la constante \(R = 0.0821 \, L \cdot atm/(mol \cdot K)\) y que \(T = 298 \, K\)). Asegúrate de mostrar todos los pasos de tu razonamiento y cálculos.
Ejercicio 15:
Un recipiente contiene 2 moles de oxígeno (O₂) y 4 moles de hidrógeno (H₂). Calcula la cantidad de agua (H₂O) que se puede formar mediante la reacción de combustión entre hidrógeno y oxígeno, utilizando la ecuación balanceada: \[ 2H_2 + O_2 \rightarrow 2H_2O \] Indica también si alguno de los reactivos queda en exceso y, en caso afirmativo, determina la cantidad que sobra.
Ejercicio 16:
Un recipiente contiene 2 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se realiza la reacción de formación de agua (H₂O) según la ecuación: \[ 2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \] a) ¿Cuántos moles de agua se pueden obtener en total? b) ¿Cuántos moles de O₂ y H₂ quedan después de la reacción? c) ¿Qué reactivo es el limitante en esta reacción?
Ejercicio 17:
Un recipiente contiene 2 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se realiza la reacción de formación de agua (H₂O) según la ecuación: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \] a) ¿Cuántos moles de agua se pueden formar? b) ¿Cuántos moles de cada reactivo sobrarán después de la reacción?
Ejercicio 18:
Un recipiente contiene 2 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se realiza la reacción de formación de agua (H₂O) según la ecuación: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \] a) ¿Cuántos moles de agua se pueden obtener? b) ¿Cuántos moles de hidrógeno y oxígeno sobran después de la reacción?
Ejercicio 19:
Un recipiente contiene 2 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se realiza la reacción de combustión para formar agua (H₂O), determina lo siguiente: 1. Escribe la ecuación química balanceada para la reacción. 2. ¿Cuántos moles de agua se producirán? 3. ¿Cuál es el reactivo limitante en esta reacción? 4. Si la reacción se lleva a cabo completamente, ¿cuántos moles de oxígeno y hidrógeno quedarán sin reaccionar?
Ejercicio 20:
Un recipiente contiene 2 moles de oxígeno (O₂) y 3 moles de hidrógeno (H₂). Si se produce una reacción completa para formar agua (H₂O), ¿cuántos moles de agua se generarán y cuántos moles de alguno de los reactivos quedarán sin reaccionar? Considera la ecuación de la reacción: \[ 2 \, \text{H}_2 + \text{O}_2 \rightarrow 2 \, \text{H}_2\text{O} \]

¿Quieres imprimir o descargar en PDF estos ejercicios de Física y Quimica de 4º ESO del temario Estequiometría con sus soluciones?

Es muy sencillo. Haz clic en el siguiente enlace para convertir los ejercicios de repaso de Física y Quimica de 4º ESO del temario Estequiometría en un archivo PDF que incluirá las soluciones al final. Así podrás descargarlo o imprimirlo para practicar sin necesidad de usar el ordenador, teniendo siempre a mano los ejercicios resueltos para verificar tus respuestas.

Otros temas que pueden interesarte:

Resumen de Estequiometría – 4º ESO

La estequiometría es una parte fundamental de la química que se ocupa de las relaciones cuantitativas entre los reactivos y productos en una reacción química. A continuación, se presenta un resumen del temario que hemos estudiado, junto con los puntos clave que debes recordar al realizar los ejercicios.

Temario de Estequiometría

  • Concepto de estequiometría
  • Reacciones químicas y balancing
  • Relaciones moleculares y molaridad
  • Cálculos de moles
  • Uso de la ley de conservación de la masa
  • Aplicaciones de la estequiometría en problemas prácticos

Breve Recordatorio Teórico

En este tema, hemos aprendido que la estequiometría se basa en la idea de que en una reacción química, la cantidad de materia se conserva. Esto significa que la masa de los reactivos es igual a la masa de los productos. Para poder realizar cálculos estequiométricos, es esencial balancear las ecuaciones químicas correctamente, asegurando que se cumpla esta ley.

El concepto de moles es crucial, ya que nos permite relacionar la cantidad de sustancia con el número de partículas. Recuerda que un mol de cualquier sustancia contiene el mismo número de entidades, conocido como el Número de Avogadro (aproximadamente (6.022 times 10^{23})). A través de la molaridad, podemos calcular la concentración de una solución, lo que es fundamental en muchos problemas estequiométricos.

Finalmente, es importante practicar la aplicación de estas teorías en problemas prácticos, donde deberás utilizar los conceptos aprendidos para resolver ejercicios de manera efectiva. Recuerda que la práctica es clave para dominar la estequiometría.

Si tienes dudas, no dudes en consultar el temario o preguntar a tu profesor. ¡Sigue practicando y verás cómo mejoras en este tema!

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *